复旦大学&SAIS:2025年科学智能白皮书

传统科学发现从大规模解空间中生成候选假设并验证,效率低且难以找到高质量解。

人工智能凭借强大的数据处理和分析能力,可以更有效地探索解空间,生成高质量的候选假设。例如,在纯数学领域,机器学习可以辅助数学家发现新的猜想和定理‘。科学研究依赖于实验评估理论。传统的实验设计和优化方法依赖人工经验和反复试错,成本高且效率低,如材料合成以及核聚变。

人工智能与机器人技术结合可以实现实验的自动化设计与执行,并根据实时数据调整实验参数,优化实验流程和候选对象。

总之,人工智能可以有效整合不同学科的数据和知识,打破学科壁垒,促进多学科深度融合,解决学科的挑战性问题。跨学科合作不仅拓展了各学科的研究边界,还催生了计算生物学、量子机器学习、数字人文等新兴学科。


​文档链接将分享到199IT知识星球,扫描下面二维码即可查阅!

感谢支持199IT
我们致力为中国互联网研究和咨询及IT行业数据专业人员和决策者提供一个数据共享平台。

要继续访问我们的网站,只需关闭您的广告拦截器并刷新页面。
滚动到顶部
Baidu
map