智能医疗 – 庄闲棋牌官网官方版 -199IT
//www.otias-ub.com 发现数据的价值-199IT Tue, 22 Dec 2015 09:15:59 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.4.2 可穿戴设备:未来大数据智能医疗的缔造者
//www.otias-ub.com/archives/420413.html Tue, 22 Dec 2015 09:15:59 +0000 //www.otias-ub.com/?p=420413 要说今年最火爆的概念,那就非可穿戴设备无误,国际巨头谷歌、高通、三星的引领,再加上国内的华为、中兴、果壳电子等厂商的切入,使整个可穿戴市场发展到一触即发的临界点。在即将到来的2014MWC,全球的厂商都卯足了劲,准备在这个电子盛事上面一展其可穿戴设备风采。

为何一个小小的可穿戴设备能够吸引全球厂商的瞩目呢?广阔的市场前景是一剂强心针。

根据预计2014年可穿戴设备市场需求将达到500亿美元,2015年中国可穿戴设备市场规模将达到114.9亿元。在ABI发布的关于2014年可穿戴设备市场报告详细预测了七大类可穿戴设备的出货量,包括:可穿戴照相机、智能眼镜、智能手表、可穿戴医疗健康设备、活动跟踪器、3D动作追踪器、还有智能服装(具体预测可参考图1),全年智能穿戴产品出货量将高达9000万台。

265dde7111e70dd557f

  图一

而全球的用户为什么会青睐这些被很多专家看做“鸡肋”的设备?我们从上图可以看出端倪:ABI的数据显示,在医疗健康方将会可穿戴设备发展最重要的一环,我们来剖析一下可穿戴是怎样影响医疗行业。

医疗健康的可穿戴设备,作为一个高科技产品,拥有着高精度的数据采集、处理和传送功能。我们先深入了解一下可穿戴设备如何采集高精度数据。

4688bca8ace322dd409

  图二

  目前市场上与医疗健康相关的可穿戴式传感器主要有两大类:

一个是体外数据采集,主要通过带G-sensor的三维运动传感器或GPS获取运动状况、运动距离和运动量。

第二是通过体征数据(如心率、脉率、呼吸频率、体温、热消耗量、血压、血糖和血氧、激素和BMI指数,体脂含量)监测来帮助用户来管理重要的生理活动。

而现阶段可以利用的体征数据传感器包括:1、体温传感器;2、热通量传感器,用来监测热量消耗能力,可以用于血糖辅助计算和新陈代谢能力推算;3、体重计量传感器,用于计算BMI指数;4、脉搏波传感器,推算血压,脉率等数据;5、生物电传感器,可用于心电、脑电数据采集,也可用来推算脂肪含量等;6、光学传感器,推算血氧含量,血流速。

通过这两种方式就会收集到每个不同的个体的数据而整合成为一个大型的数据库。这就是这几年倍受欢迎的“大数据”概念。而产生的这些数据量如何应用来给人们“提出”建议呢?

可穿戴设备在健康医疗应用的第一个方面则是对使用者的健康进行监控,根据联合国的数据,与2000年每10个人中有1个超过60岁相比,到2050年时,每5个人中就有一个人超过60岁。需要监控的慢性病包括包括高血压,晚发型糖尿病,心脏病,主要患者是老人。这意味着,用于慢性病家庭健康管理的设备需求将持续增长。

而在收集了大量的数据后,我们可以知道每个人现在的健康状况。以中国为例,在十几亿的人口中,如果我们有两亿的人口在用可穿戴设备,我们能够收集上来的数据,就能够预测整个中国一代人或者下一代人的健康状况,甚至能够影响到我们的健康、饮食、生活习惯等各种方向的变化。对整体的情况进行分析指导,这是可穿戴医疗健康应用的第二个方面。也是可穿戴设备与大数据的其中一个体现。

上文说到的数据分析预测,这只是大数据应用的最基本方面,下面我们讲述一下如何深层处挖掘这些数据的潜力。

在可穿戴设备将监测到的个人数据上传至云端后,用户的数据放到已有的数据模型中进行分析,并做纵向和横向的比对。同时也会在移动端的APP应用上,通过对所有的分析汇总成一个健康风险指数,用户每次登录会看到自己的健康风险指数和同龄、同性别人群的平均风险指数,并且能明确自己健康风险在同龄人群中的排位。同时,设备会根据使用者的实际情况进行调整,一旦数据显示异常,就会加大检测密度,反之则会拉长检测间隔。根据得出的数据对个人健康状况和医疗进行建议,这是可穿戴大数据应用的另一个体现,也是未来最注重的一个方面。

而关于这方面的应用,在外国已经做出了尝试。

日前,美国最大的医疗保险公司Wellpoint已经开始通过运用IBM的超级计算机“Watson”帮助医生来针对病人的病情进行诊断,服务7000万人。以癌症治疗为例,目前需要一个月或更长时间才能制定出针对性的药物治疗方案,而未来利用Watson的认知计算技术可以将周期缩短至一天,极大提高癌症患者的治愈率。同时“Watson在医疗、医药行业可以帮助肿瘤中心做几个复杂癌症疾病的诊断和数据分析。

这种基于大数据给出的医疗建议当然只能当做一个参考建议。

当然这种可穿戴设备的大数据如果能够跟医院结合起来处理,那么就会更有效的利用这个技术来对个人健康进行监控处理。

我们可以通过由医院提供的专业随身监控设备,实现一些科目的动态体检。经过设备接收信息以后,医生可以对我们的身体状况进行评测,而我们的智能手机则会充当数据传递、展现,接收医生反馈的身体状态变化,同时及时传回一些更准确的医疗建议。通过智能设备提醒你按时服用降压药,按时吃饭,身体出现异常状况时也会发出警报通知附近的医院等等,在某些极端状况下,甚至会提供简要的应急处理建议。

因此就长远开来,医院、数据、设备三者的结合,才能完全体现出大数据与可穿戴的优势。而可穿戴设备需要解决的续航、数据处理、采集、传送和给对这些数据进行分析计算机的能力是整个行业发展的关键。当然医疗行业的支持才是引领大数据下可穿戴医疗发展方向的舵手,这在国外已经有医院进行了试水,让我们静待这一天的到来。

]]>
TrendForce:预估2018年全球智能医疗服务支出达300亿美元
//www.otias-ub.com/archives/412410.html Wed, 02 Dec 2015 15:10:41 +0000 //www.otias-ub.com/?p=412410 在互联网和物联网的持续发酵与带动下,智能医疗相关产业将在2016年加速成长。TrendForce旗下拓墣产业研究所预估2018年全球智能医疗服务支出,如远程监测、诊断设备、生活辅助、生理数据监测等,将达300亿美元,2016~2018年全球智能医疗服务支出复合增长率约60%。

304879001448248363

拓墣产业研究所物联网分析师刘耕睿表示,除了医疗服务,机器人、云端、医材等相关产业也将因智能医疗的建设而受惠,利用各种新技术的导入,让医疗服务质量能够持续提升。

2016年智能医疗市场趋势分析如下:

人口老化带来沉重压力 运用智能化科技提升服务与降低看护负担

高龄甚至超高龄社会已经逐渐在台湾地区与许多国家成型,对于整个社会而言,不只是人口结构的变化,更影响了整体医疗服务结构。刘耕睿表示,智能化将改变既有医疗服务的样貌,地域性(院内与院外)与主权性(医患关系)将会有所转移,医疗服务将会更加开放并且更具弹性,而电子病历与疾病信息平台的建立,有助实现医院无纸化以及信息兼容。

智能医疗建设引领新兴科技,云端、机器人、医材成重点商机

新兴科技的导入可加速智能医疗的实现,医疗云端平台、看护机器人、高价值医材成为医疗产业的重要商机。健康/医疗云端平台包含了医疗、保健、看护与防疫等四大主轴,结合终端、信息与通信科技技术,达到病人信息管理、个人医疗记录以及健康促进等医疗信息服务的整体提升,拓墣预估2016年健康/医疗云端平台市场规模超过70亿美金。

看护型机器人在医疗看护提升方面也成为主要商机之一,支持以及陪伴沟通功能将会是之后的重点发展功能。医疗器材则着重于高端医材的开发,而后持续朝向零组件及关键材料自主化、软硬件整合发展,并以系统整合、商业模式革新与品牌服务为目标迈进。拓墣预估2020年台湾医材市场规模将达到65亿美金。

医疗管理优化、个人化医疗及预防医疗是智能医疗的未来

利用各种科技技术加上大数据分析,让传统医疗服务拥有更多的信息以及服务方式,在合乎法规情况下进行信息的适度开放与流通,对于跨院、跨区域的医疗管理系统互通更显重要。信息流通不仅给予医疗提供方更多工具可运用,医疗服务的接受者对于自身医疗信息的掌握度也能有所提升,当医疗机构及个人对医疗信息都能充分掌握,更为客制及个人化的医疗服务就有机会实行,有助于实现预防医疗的目标。

]]>
医学影像大数据与智能医疗
//www.otias-ub.com/archives/389613.html Tue, 29 Sep 2015 03:37:51 +0000 //www.otias-ub.com/?p=389613 文|枫叶松木木

通常大数据是指数据量和数据维度均很大,数据形式也很广泛,如数字、文本、图像、声音等等。在医学领域,随着信息化的不断深入,医学数据也越来越丰富,其中医学影像数据是一个十分重要的组成部分,而且,医学影像信息被数字化、数据化后形成了丰富多样的、存储量庞大的医学大数据。今天,我们就讨论一下利用医学影像大数据推动智能化医疗发展方面的话题。

826

IBM的智能医学影像分析项目-Watson计划

据报道,IT巨头IBM将以10亿美元收购医学成像设备提供商Merge Healthcare,后者主要帮助医生和医院存储和分析CAT断层扫描、X射线以及其他医学影像。IBM计划将Merge的技术整合到自身的Watson人工智能技术中去。IBM认为,Watson的认知计算能力在医学造影方面完全可以辨别患者应该接受X射线、CAT还是核磁共振,现在独缺的是客户以及医学影像资料,而这恰好也是Merge可以提供的资源。

目前医疗数据中有超过90%来自于医学影像,但是这些数据大多要进行人工分析。如果能够运用人工智能技术分析医学影像,并将影像与医学文本记录进行交叉对比,就能够极大地降低医学诊断上的失误,帮助医生精准诊断,挽救患者生命。

IBM 的Watson计划想法很好,但是依然存在着诸多挑战。最大的问题在于如何证明这个计划的效果,如何向健康保险公司证明对于Watson的投资物有所值。具体地说,Watson计划能否真正地让患者得到准确的诊断,传统的放射科医师忽略的诊断方面的问题能否让IBM的智能技术发现。

中国人“数字肺”项目

我们再回过头来看看国内。进入数字化时代,数字化、标准化、网络化、海量存储和大数据的应用,已成为医学发展的主流方向和重要标志。大数据的发展要求医院要改变传统的医疗模式-把疾病的早预防、早诊断、早治疗等服务放在第一位考虑。随着人们期待更好的医疗卫生保健服务,从出生到死亡的全程医疗服务也已经成为了医疗管理新模式的发展方向。通过互联网络把预防、诊断和临床作业过程纳入到数字化网络中,实现这些重要任务的核心环节就是医学影像信息化,充分体现大数据、实时在线、多点传输与共享给现代医疗带来的好处。

据报道,由北京医院等国内知名大医院联合与合作,开展了中国人“数字肺”项目-“基于医学影像大数据的呼吸系统疾病辅助诊断平台”。项目以构建具有统计学意义的中国人“数字肺”,揭示支气管、肺血管和肺实质结构与不同主要肺部疾病之间的关系,通过采用数据挖掘与量化分析技术,分析、处理和量化COPD、支气管哮喘、支气管扩张、肺间质性疾病、肺栓塞和孤立性肺结节的评价体系和诊断标准。目前,该项目已经在健康成人支气管树不对称分叉特性的研究、低剂量CT扫描的对支气管定量测量的评价研究、吸烟对肺组织损伤的纵向研究、肺血管改变与肺气肿定量的动态评估等方面取得了进展,获得了一系列卓有成效的研究成果。

922

影像大数据-早期肺癌筛查平台

在大数据盛行的今天,大型影像诊断设备结合大数据分析提供更准确的诊断报告显然是越来越可行和越来越可靠的事情。据报道,由上海多家大型医疗机构合作开展了“上海地区早期肺癌的影像学筛查及诊断研究”项目。该项目通过多家医院多中心采集、共享并研究早期肺癌病例数据样本,制定早期肺癌高危人群预警指标,进而建立一套肺癌筛查及早期诊断的最佳方案和标准流程。同时,在多中心研究基础上,建立可拓展、可挖掘的上海市早期肺癌患者数据库。该平台涵盖调查问卷、患者信息管理、影像阅览、肺结节CAD检测、结构化诊断报告、远程会诊、病人随访、统计分析等筛查全过程,为研究项目提供坚实技术基础。目前,该早期肺癌筛查平台已实现上海多家三甲医院数据互联,支持多家医院在线实时会诊、资源共享;此外,通过人工智能技术自动精准识别小肺结节,可帮助医生减少漏诊。

针对早期肺癌难以发现、容易漏诊的问题,该早期肺癌筛查平台融入了肺癌计算机辅助检测(CAD)引擎,可自动精准识别影像中直径更小的肺结节,计算并提供结节大小、密度等量化参数供医生参考。同时,参考世界先进成熟的肺癌筛查平台,采用结构化报告,实行“双盲模式”—第一份报告不参考CAD检测,作为初诊,第二份报告参考CAD,完成终审报告,人机相互对照参考,改变以往早期肺癌筛查中医生仅靠主观诊断的筛查模式,以减少漏诊几率。

影像大数据挖掘

数据挖掘从数据形式和相关技术上说,大致可以划分为结构数据挖掘和非结构数据挖掘。所谓结构数据挖掘是基于结构化的数据基础上的知识发现,例如我们常见的关系型数据,包括数值型数据、字符型数据、日期型数据等等,应用相关的数据挖掘技术对这些关系型数据开展分析。而所谓非结构数据挖掘是基于非结构化的数据基础上的知识发现,例如我们常见的自然语言文本数据、各种图像数据、各种音频数据等等,基于这些类型的数据开展数据挖掘分析。

医学影像数据挖掘就是非结构数据挖掘的一种,它有如下几个主要特点:

1. 影像数据一般具有相对的含义,而结构化数据一般具有绝对的含义。

2. 影像内容的理解具有主观性的特点,对影像信息可以有多种不同理解,并依赖于影像表示方法和应用领域专业知识。

3. 影像信息中包含影像数据对象的空间关系信息。

从目前的影像数据挖掘技术的现状来说,原始影像一般还不能直接用于影像数据挖掘分析,必须进行预处理,以生成可用于高层次挖掘的影像特征库。影像数据挖掘的一般流程通常包括影像的存储、影像的预处理、影像的搜索、影像的挖掘和展示等步骤。

影像数据挖掘方案

目前,影像数据挖掘方案主要有功能驱动型模型和信息驱动型模型。

所谓功能驱动型模型是以不同的功能模块来组织,功能驱动的影像数据挖掘是针对具体应用的特定要求来设计数据挖掘方案的,通常包括:

1. 影像采集模块-从影像数据库中抽取影像数据;

2. 预处理模块-提取影像特征,并把特征信息存放在特征数据库中;

3. 搜索引擎-利用影像特征信息进行匹配查询;

4. 知识发现模块-对影像数据进行算法分析,以发现数据的主题、特征、关系等规律。

所谓信息驱动型模型,是针对影像的原始信息开展基于内容的影像数据挖掘的方案。该方案基于原始特征的对象或区域信息,利用挖掘算法和专业知识将整幅影像进行有意义地分割,然后开展高层次地计算与挖掘分析,从而推导出具有高层次语义的、易用的、易于理解的模式。该方案将影像信息划分为四个层次:

1. 象素层-由原始影像信息和原始影像特征组成,如象素点、纹理、形状和色彩等。

2. 对象层-处理基于象素层原始特征的对象和区域信息。

3. 语义层:结合专业知识从识别出的对象和区域中生成高层次的语义概念。

4. 知识层:可结合与某一专业相关的文字和数字信息发现潜在的领域知识和模式。

在信息驱动方案中,象素层和对象层主要进行影像处理、对象识别和特征提取,而语义层和知识层主要进行影像数据挖掘和知识整合。该方案可以在每个层次上以及不同层次间开展数据挖掘分析。

影像数据挖掘算法

与结构化数据挖掘的步骤和算法相类似,影像数据挖掘的技术主要包括:影像数据预处理技术:如去噪、对比度增强、影像分割等等;特征提取和模式技术;如分类、规则提取、预测和聚类等等,既包括有监督学习也包含无监督学习。下面,我们就简单介绍一下有监督学习的分类技术和无监督学习的聚类技术。

基于影像数据的分类技术流程主要分为三步:

1. 建立影像表示模型,对已进行类标记的影像样本数据进行特征提取,并建立每一影像的属性描述;

2. 对样本数据集进行训练和学习,得到具有相当分类精度的分类模型;

3. 根据分类模型对未标记的影像数据集进行自动分类判别。

影像数据分类的挑战性在于,如何建立低层可视特征和高层语义分类间的映射关系。

基于影像数据的聚类技术,是根据没有先验知识的影像数据分布,将无类别标记的影像数据划分为有含义的不同簇,通常包括四个步骤:

1. 影像特征提取和选择;
2. 建立影像相似性模型;
3. 尝试不同的聚类算法;
4. 评估最佳的分组方案。

影像数据聚类的挑战性在于,如何在分簇未知的情况下,如何科学地找到一个最佳的分类方案。

影像数据挖掘应用

人脑是高度复杂的时空动力系统。基于神经影像大数据,群组独立成分分析(ICA)作为一种信息驱动型算法,被广泛应用于探索人脑系统的时空特性。据文献报道,中国科学院心理研究所研发出一种在多被试神经影像数据中挖掘被试分组(亚组)的群组ICA方法-gRAICAR。模拟数据显示,gRAICAR可以精确地揭示脑功能网络的个体间差异。进一步地,基于实际静息态功能磁共振成像数据,gRAICAR不仅能够估计每个脑功能网络的被试间的一致性,揭示被试间在脑功能上的相似关系,而且可以据此探测具有较高一致性的亚组。gRAICAR成为完全的信息驱动方法,为科研人员基于数据产生进一步的科学假设提供参考,将为深入挖掘多被试神经影像数据,为建立与心理精神相关脑功能疾病的神经影像标志提供有力工具,为“开放式神经科学”提供方法学支撑。

gRAICAR可以说是影像数据挖掘在神经学领域中的一个应用。当然,影像数据挖掘肯定会在更广泛的医学领域中发挥着重要的作用,必将成为现代医学走向智能医疗的一个利器!

]]>